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1. Phys. A Math. Gen. 28 (1995) 713S7155. Pdnted in the UK 

Subsingular vectors and conditionally invariant 
(q-deformed) equations 

.V K Dobrevt 
Amold Sommetfeld Institute for Mathematical Physics,. Technical University of Clausthal, 
Leibnizstrasse IO, 38678 Clausthal-Zellerfeld. Germany 

Received 9 August 1995 

Abstract. We give a systematic discussion of the relation betweensubsingular vectors of Vema 
modules over semisimple tie algebras F and differential equations which are conditionally 5- 
invariant. This is extended t o ~ t h e  Drinfeld-limbo q-deformation Uq(G) of G. We treat in 
detail the conformal algebra su(2 ,  Z), its complexification rI(4) and their q-deformations. The 
conditionally invariant equations are the d' Alembert equation and a new equation arising from 
a subsingular vector proposed by Bemstein-Gel'fand-GeI'fand. We also give the q-difference 
analogues of these equations. 

1. Introduction 

It is well known that the d'Alembert equation 

0 f ( x )  = 0 

is Poincar.5 and even conformal invariant, see 111, for example. Here f ( x )  is a scalar field of 
fixed conformal weight, x = (xo, X I ,  x l ,  x3 )  denotes the Minkowski space-time coordinates, 
and a is the d'Alembert operator 0 = Vi?, = (z)z - (ai,)*. 

In this paper we would like to present representation-theoretic reinterpretations of this 
fact. There are two aspects to this. First, from the point of view of induced representations 
of the conformal algebra su(2,2) one cannot automatically obtain representations which 
are also irreducible finite-dimensional (e.g., scalar above) representations of the Lorentz 
subalgebra. To ensure this one has to impose additional conditions and to restrict oneself to 
functions which obey these conditions. In the case at hand there are two such conditions~and 
it is on such functions that (1) is conformal invariant., That is why we shall call the conformal 
invariance of ( I )  conditional. (Using approaches different from ours other conditionally 
invariant equations were considered in [2-61, (for further comment see subsection 3.1).) 

The second aspect is that we can find a counterpart of (1) in the representation theory 
of Verma modules over the complexification sl(4) of ~ ( 2 . 2 ) .  Namely, this counterpart is 
a subsingular vector of a Verma module (definition below). 

In this paper we consider (1) and conditionally invariant equations in general applying 
the approach of [7]. The required results from [7] stated in condensed form (given in some 
detail in subsection 3.1) are: to every singular (subsingular) vector of a Verma module over 
a semi-simple, and also reductive, Lie algebra B there corresponds a differential operator 
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7136 V K Dobrev 

and equation invariant (conditionally invariant) with respect to 8. (Both statements are 
also valid for the corresponding Lie group with some additional subtleties, see [7].) 

One of the specifics of the approach of 171 is that if one wants to consider (conditional) 
invariance with respect to some real Lie algebra GO one has also to know the invariance 
with respect to the complexification G of GO. The same is true in the q-deformed case. 
That is why we treat sl(4) and the conformal algebra su(2,2) in parallel, and analogously 
U9(sl(4)) and U,,(su(2,2)). 

We teat the q = 1 case in detail since some of our results are also new in this classical 
situation. In particular, we also give (1) with a non-trivial right-hand side and we present 
a new conditionally invariant equation. 

The paper is organized as follows. The notion of subsingular vector is explained in 
subsection 2.1 for arbitrary (q-deformed) simple Lie algebras. Then we restrict ourselves 
to sl(4) and U,(sl(4)) and we give the singular and subsingular vectors we shall need. In 
parallel we give the explicit conditions for irreducibility of the lowest-weight modules. Here 
the exposition is common for generic q. These results are applied respectively in sections 3 
and 4 to obtain the conditionally invariant equations for q = 1 (see equations (50),(57)) 
and for generic q (see equations (71), (73)) explicitly (given together with the equations 
ensuring their invariance). 

2. Subsingular vectors 

2.1. Let G = G+ @'He G- be a semisimple Lie algebra, where 3.1 is a Cartan subalgebra of 
G, G+ (G-) are the positive (negative) root vector spaces of the root system A = A(G, E) ,  
corresponding to the decomposition A = A+ U A- into positive and negative roots. 
Let As = (ai I i = I, ..., r = rankG] be the system of simple roots of A. We 
use the standard deformation U&) [8,9] given in terms of the Chevalley generators 
Xi' , Hi E 'H , i = 1,. . . , r of 8. ~ (The explicit relations we give in appendix A for 
G = sl(4). For general G see [8,91, or in the same notation as here [IO].) The elements 
Hi span the Cartan subalgebra 1-1 of G, while the elements XF generate the subalgebras 

A lowest-weight module (LWM) MA over U&) is given by the lowest weight A E 3.1* 
(E* is the dual of 'H) and a lowest-weight vector uo so that Xu0 = 0 if X E g-, 
Huo = A(H)uo if H E 3.1. In particular, we use the Verma modules V" over U,(sl(G)) 
which are the lowest-weight modules such that V" E U,(G+)uo. 

(2) m i = m i ( A ) = ( p - A ) ( H i ) = l - A ( H i ) = l - ( A , a i )  i = l ,  ..., r 
where p = f CBEh+ ,9, ( p ( H d  = (p ,~ak)  = 1) and (., .) is the scalar product of the roots 
normalized so that for the short roots LY we have (01, 01) = 2, a" 

We note that these numbers completely determine the lowest weight A and will also be 
used for the characterization of the LWM. The collection of these numbers will be called the 
signature of A and denoted x (A) or just x :  

U@*). 

Let us introduce the numbers 
" 

Za/(a, LY). 

x = x ( A ) = ( m ~ ,  ..., mr). (3) 
Analogously, we shall also use numbers corresponding to arbitrary positive roots 

m, = m,(A) G ( p  - A)(&) = ( p  - A, E") (4) 
where H, E 7 i  corresponds to the root 01 by the isomorphism 'H E 'H*, (as Hi corresponds 
to a;). Certainly, each m, is a fixed linear combination of mi, however, these numbers 
have independent importance as we shall see just below. Naturally, m, = mi. 

01 E A' 
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In this paper we restrict ourselves to the case when the deformation parameter q is not 
a non-trivial root of 1. (For the case where q is a non-trivial root of 1 we refer the reader 
to [lo].) In this case a Verma module V" is reducible [ll] (q = 1). [lo] iff at least one of 
the numbers ma is a positive integer: 

m, E N (5) 
Whenever (5) is fulfilled~there exists a singular vector U, = in V" such that 
U, $ Cue, X u ,  = 0 ,  V X E G- and H v ,  = (A + m,a)(H) U,, V H E 71. The space 
I" =~ Uq(Gf) is a proper submodule of V" isomorphic to the Verma module V"+m=a 
with a shifted lowest weight A + maor [7, IO]. Clearly, this implies that V" and V A f m e a  
have the same values of the Casimir operators. 

Remark 1. ' Note that if we were considering highest instead of lowest weights, the analogue 
of the numbers mt,  (me), would be defined as m$ = 1 +A(&), (mtw = ( p + A ) ( H = ) ) ;  the 
shifted weight is A - m:'"a. However, the statement about reducibility is unchanged [7]. 

It is important that one should be able to find explicit formulae for the singular vectors. 

(6) 

The singular vector introduced above is given by [7,10] 

U,? = ua.m.= = p u y x : ,  . . . , x:) U0 
where is a homogeneous polynomial in its variables of degrees mnj, where ni E Z+ 
come from a = is unique 
up to a non-zero multiplicative constant. The papers [7, lo] contain all the explicit singular 
vectors needed in this paper. Note that we refer to both, since [7] gives formulae for q = 1, 
while [IO] gives such formulae for general q .  (More general explicit formulae for singular 
vectors, including all singular vectors for U,(sl(n)), are contained in [12]. Note that the 
modules considered in [lo, 121 are highest-weight modules and the singular vectors are 
polynomials in X2:; the translation of those formulae to the lowest-weight module setting 
is straightforward in view of the above remark.) 

Certainly, equation (5) may be fulfilled for several positive roots (even for all of 
them). Let AA denote the set of all positive roots for which (5) is fulfilled, and let us 
denote: 1" = UaEAAZu.  Clearly, i" is a proper submodule of V".  Let us also denote 

Furthermore, we shall also use the following notion. The singular vector U' is called a 
descendent of the singular vector u2 $ @VI if there exists a homogeneous polynomial PI* 
in X +  such that u1 = P12 v2. Clearly, in this case we have: I '  c 12, where I' is the 
submodule generated by U'. 

The Verma module V" contains a unique proper maximal submodule I" (2 7") [ l l ,  131. 
Among the lowest-weight modules with lowest weight A there is a unique irreducible one, 
denoted by LA,  i.e. L A  = V"/Z". (If V" is irreducible then L A  = V".) 

It may happen that the maximal submodule I" coincides with the submodule i" 
generated by all singular vectors. This is the case, e.g., for all Verma modules if rankG < 2, 
or when (5)  is fulfilled for all simple roots (and, as a consequence for all positive roots). 
Here we are interested in the cases when i" is a proper submodule of I". We need the 
following notion. 

Definition. Let V" be a reducible Verma module. 
subsingular vector if U, 6 7" and the following holds: 

niaj, ai is the system of simple roots. The polynomial 

F A  v"fiA. 

A vector us" E V" is called a 

X U , , E ~ ~  V X E G - .  (7) 
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Remark 2. The image of a subsingular vector in the factor-module F A  is a singular vector 
of F A .  For brevity we shall say the subsingular vector 'becomes' a singular vector in the 
corresponding factor-module. From this it is also clear that a subsingular vector may be 
represented by a homogeneous polynomial in X:. 

We need to be more explicit even in the general case. First of all it is clear that it is 
enough for a vector to be subsingular if (7) holds for the negative simple root vectors X,:. 
We can rewrite (7) in the following way: 

where Q j u  are homogeneous polynomials such that the RHS is a homogeneous polynomial, 
and Ai is a subset of AA C A+, such that 01 E A; iff Qi. is a non-zero polynomial. Let us 
denote by A, the union of A; : As" = U;=, A;. We shall call As" the set of roots associated 
with the subsingular vector us,,. The corresponding set of singular vectors {U".'"- I LY E As"] 
will be called singular vectors associated with the subsingular vector usu. Clearly As" is a 
subset of AA and in general a proper subset. Let Is. = UccA,nZm(s fA),  F, V"/I,,; then 
us" becomes a singular vector in F,,, i:e. when we factorize all singular vectors associated 
with it. 

Clearly, if two singular vectors U I  and u2 belong to A,, (Ai? As") and U] is a descendent 
of u2, then we can omit u1 from the set AA (A;, As"). 

Clearly, U,, and iA generate a submodule I; such that 

I,, siA c z; I A  c vA. (9) 

2.2. We now restrict ourselves to 9 = sl(4). A synopsis on U,(s1(4)) is given in 
appendix A. For the six positive roots of the root system of sl(4) one has from (2),(4) 
(see [71): 

ml = 1 - A(H1) 

m2 = 1 - A(H2) 

m3 = 1 - A(H3)  

m12 = 2 - A(Hlz) = ml + m2 

m s  = 2 -  A(H23) = m 2 + m 3  

m13 = 3 - A ( H d  = m i  +m2+m3. 

(104 

( lob)  

(IOd 

(104 

( 1 W 

(loll 

Thus the signature here is x = (ml, m2, m3). 

in terms of the above notation: 
For further reference we give the value of the sl(4) second-order Casimir operator [14] 

~2 = $ (m:3 + m$ + ;(mi - m3)') - 5 (11) 

which is normalized to take zero value on the trivial irrep ( m ~  = 1) (and thus on all 
representations partially equivalent to it). 
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2.3. Here we treat the Bernstein-Gel'fand-Gel'fand example of a subsingular vector which 
appeared in the seminal paper [ 11 J (q = 1) and which we give for general 4 (see appendix A 
for the relevant U,(s1(4)) formulae). It occurs for A(&) = A(f3)  = 1, A(&) = 0, 
i.e. x = (ml.m2,m3) = (O, l ,O) .  Thus there are four positive m, E N from (10) : 
m2 = m12 = m23 = mi3 = 1. Correspondingly, there are four singular vectors: 

u2=x: uo m2=1 (124 

ui2 = x: xz uo = X: u2 

U' 2 3 -  -x+x+u 3 2 0 -  -x+uz 3 mz3=1 (12b) 

uj3 = x: x: X: uo = x: x: u2 

mlz = 1 

m13 = 1 .  

However, only the singular vector u 2 ~  is relevant since the others are its ~descendents. 
What is important for us is that there is the following subsingular vector: 

Ubgg = (x:x:x: - x:x,'x:) U0 . (13d 

it is easy to see that 

x; = = x: U2 

x; U b s  = 0 (14) 

x; Vbgg = -U12  = -x: v2. 

Thus equation (7) is indeed fulfilled, while comparing with (8) we see that u2 is indeed 
associated with Vbgg. 

It is useful for future applications to have a different expression for the subsingular 
vectors. Equation (13a) is in the unordered Chevalley basis. An expression in the ordered 
PBW basis is: 

Ubgg + qx:x& + q-'x&x:) U0 (136) 

which for q = 1 is exactly equal to (13a) and for q # 1 differs from (13a) by the inessential 
term (q - q-')X:X:X:uo E TA. For q = 1 a third expression coinciding with (13a, b )  is 

ubgg = + x&x:) U0 4 = 1. ( W  

Note that we have translated the result of [ I l l  into our lowest-weight module setting 
in [ l l ]  (given naturally for q = I), is not correct. 

Let 12) .denote the lowest-weight vector of the factor-module F2 = VA/12.  Then the 

and that the actual expression for 
(Also eqkations (12b) are not given in [I I].) 

singular vectors in (12) become null conditions, the relevant one (12a) giving 

x: 6 = o .  (15) 

Clearly, ubsg becomes a singular vector in Fz. If we also factor~out ubgg we have 
the following null conditions in the resulting irreducible module L A  with lowest-weight 
vector 12): 

x: 12) = o  

(x:x:x: - x:x:x:) 12) = 0. (166) 
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2.4. In this and the remaining subsections of section 2 we consider the other archetypal 
sl(4) example [lS, 161. In this subsection we give some preliminaries. We take first an 
arbitrary Verma module V" and the following vector: 

VJ = P V O .  (17) 
where P is the following homogeneous polynomial in U4(G+): 

(18) p=x+x+-  -1 + + 
13 2 4 x12x23' 

Below we shall need the following technical result: 
x - "  J - - 4 -1 (LAW*) + 1lyXzX: - [A(Hz)lyX:X;) X: uo 

+q-] X: ([A(ffz) - 1lJrXi  - [A(Hz)lyX:X:) uo (194 

= 4-l ([A(&) + 1lqX;X: - [A(Hz)lqX:X$) X: 80 

+q-I X: (-[A(Hz) - 1lyX:X: + [NHz)IpX;X:) vo (19b) 

Also for future reference we note several equivalent forms of the polynomial P valid 
where [XI, (qx - q-')/h, h q - q-' (see appendix A). 

for any weight: 

P=x:3x;-q-lx+x+ 12 23 

= x:,x: - qxjx:, 
= 4-1 (x:x,+x:x: + x;x:x;x: - [zlyx;x:x:x;) 

= 4-1 (x:x:x:x: + x;x:x;x: - [2],x;x:x:x:). 
and two forms valid if a E A(&) # 1: 

p=-  4-I (x:x; - [zl,x$x:) ([a - 11,x:x; - [a],x:x:) 

+- x: ([a - 11,x:x; - [al,x:x:) x: 
[a - 11, 

[a - l l y  

1 

=- q-l (x:x; - [2],x:x:) ( [ a  - l],X:x: - [al,x;x:) 

x; ( [a  - 11,x:x; - [alqx:x:) x: . 

la - Us 
1 +- 

[a - 114 

The need for the introduction of the parameter a will become clear below. 

2.5. Now consider a Verma module V" with lowest weight A satisfying the conditions 

A(H3) = O - m j  = 1 (224 

A(Hi + Hz) = 1 W l l ~ i z  = 1. (2%) 

X I ( U ) = X ( ~ \ ) = ( ~ , ~ - U . ~ ) ,  U = A(H2) E C (22.c) 

We shall denote its signature as 
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(see equations (lOc, d)). We would like to study this family of representations (and a 
conjugate one) since for these the (q-) d'Alembert operator will be a (conditionally) invariant 
operator. This will become clear in sections 3 and 4 while here we find the necessary singular 
and subsingular vectors. 

From the above two conditions follow that there are two singular vectors which are 
explicitly given by [7, IO] ~. 

u g = x :  ug mg = 1  (234 

(234  = ([a - ~],X:X; - [a],x,+x:) ug m12 = 1'. 

(There is also a singular vector corresponding to m13 = 2 [7,10], which, however, is a 
descendent of us.) 

In the above setting we shall show the special place of the vector uf (which will give 
rise to the (q-) d'Alembert operator as we shall see in the next sections). We have the 
following result. 

r f a  # 1 the vector U, is a linear combination of descendents of the singular vectors u3 

and Viz,  while $a'= I the~vector UJ is a subsingular vector. 

It is straightforward to demonstrate the validity of this statement. Let first a # 1. Then 
using (21a) we have 

Uf = P U0 = - 4-I ( X T X :  - [zl,x,+x:) U12 
[a - 11, 

To show that for a = 1 U, is a subsingular vector one may use a calculation valid for any 
a (is0 using (19a)): 

x; Uf = o  

X; uf = q-] ([a + 11,~:~: - [ a l , ~ : ~ : )  u3 + q-' X: u12 (25) 

x; U, = o  
though this calculation obscures the fact that for a = 1 the~singular vector u12 is a descendent 
one, as we shall see below, where we also show that U, is not an element off'. 

We now write down all situations systematically. 

2.5.1. If a 6 Z there are no,other nondescendent singular vectors besides (23) and the 
maximal invariant submodule is I" = I; = Iu3 U I%. We denote by L', = V" / l i  the 
corresponding irreducible factor-module, and by 11') the lowest-weight vector of L;. Then 
the expressions in (23) become null conditions, namely we have . 

x; 11') = 0 (264 

([~-~],x:x:-[~],x:x:) 11') =o. (26b) 
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2.5.2. 
corresponding to m2 = 1 - a  E N + 1: 

If a E -N then in addition to (23) there is one more singular vector [7, IO] 

U2 = (x:)'-n U0 (27) 

and two descendents corresponding to m23 = 2 -a ,  ml3 = 2. Thus the maximal invariant 
submodule is I" = I;' = I'p U Ia'z U I Q ,  L" - - V" / I [  is the irreducible factor-module, 
11") is the lowest-weight vector of L;. Then the null conditions are 

x; 11:) = o  (284 

( [a  - 11,x:x; - [al,x:x:) 11") = 0 (286) 

(x:)l-a 11") = o .  (2W 

2.5.3. If a = 0 then there is a singular vector corresponding to mz = 1 and given by (27) 
with a = 0. Here equation (23b) is also a descendent and the maximal invariant submodule 
is generated by the singular vectors (23a) and (27), I" = IT = 14 U Iu2. We denote by 
L" , - - V A  /I? the irreducible factor-module; 11"') the lowest-weight vector of Ly. Then 
the null conditions are 

x; [ 1"') = 0 (294  

x: 11"') ~= 0 .  (2%) 

2.5.4. If a E N + 1 then there,exists another singular vector [7,lOJ 

UI = (X:y U0 (30) 

Thus the maximal invariant submodule is I" = I:" = Ius U P 2  U P I ,  L iv  = V" / l [ "  
is the ineducible factor-module, 11'") is the lowest-weight vector of L;". Then the null 
conditions are 

(3 1 4  

( [a  - 11,x:x: - [al,x:x:) 11'") = o  (31b) 

( X : y  11'") = 0 .  ( 3 1 ~ )  

x: 11'") = 0 

2.5.5. Finally, if a = 1 then the non-descendent singular vectors are u3 = X;WO, see (23a), 
and V I  = X:IJO, see (30) with a = 1, while (23b) is a descendent of (30), and there also 
appears a singular vector U&, see (12b), corresponding to m23 = 1 which is a descendent 
to (23~) .  Here we also have the subsingular vector U,, see (17), (2% from the latter the 
essential one simplifying here to 

x,- U, = 4-1 ([2],x:x: - XTX;) U 3  - 4-' x: x; U, . (32) 

Now it remains from the above proof to show that us cannot be represented as a linear 
combination of descendents of UI and u3, and thus does not belong to i", which is also 
easy to see by inspecting (20). 
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We denote by FA = I w l  U Zu3 the submodule generated by~these singular vectors, by 
Fl = V"/iA the factor-module, by 11) the lowest-weight vector of FI .  We have the 
following null conditions in Fl: 

X i f i = O '  (33a) 

x: fi = o .  (33b) 

U f 1  = P 1 1 ) .  (34) 

The vector uf becomes a singular vector in Ft which we denote as - 
Factoring out the submodule built on ufi we obtain the the irreducible factor-module 
L I  = V*/Z/. We denote by 11)  the lowest-weight vector of LI. Then the null conditions 
are 

x: 11) = o  ( 3 5 4  

x: 11) = o  (356) 

(35d (x:x: - [2l9X:x:) x:x: 11) = 0 

(x:x: - [214x:x:) x:x: 11) = 0 

where for (354  we have used (35a) and (204 .  An equivalent condition to (3%) is 

(3%') 

where we have used (35b) and ( 2 0 ~ ) .  
Conditions (31) and (35) (conditions (3% c') in a different, but equivalent form) 

were given first in [17]. The corresponding irreps (for a E N) were shown [17] to be 
a construction of the irreducible massless representations of a q-conformal algebra (with 
141 = 1) characterized by the helicity h = (a - 1)/2 E ;E+. 

2.6. 
conditions 

Analogously consider a Verma module V" with lowest weight A satisfying the 

A(H1) = 0 W ml = 1 ( 3 6 4  

A(&+ H3) = 1 b m23 = 1 (36b) 

x , ( a ) = x ( A ) = ( l , I - a , a )  a = A ( H z ) E @  ( 3 6 ~ )  
(see equations (104 4). This case is conjugate to that considered in subsection 2.5 and 
all statements and formulae may be obtained verbatim by exchanging indices 1 cf 3, 
12 tf 23. Thus, we shall give for future reference only the final formulae analogous 
to (31). Namely, the conditions fulfilled in the irreducible lowest-weight module L )  (with 
a E N +  1 )  are 

X: 13) = 0 ( 3 7 4  

([a - 11,X:X: - [al,X:X:) 13) = 0 (37b) 

(X:)" 13) = 0 .  (374  

Conditions (37) were given first in 1171. 

only for the special case a = 1, which was considered in the previous subsection. 
It is interesting to note that a lowest weight can satisfy both (22) and (36) which happens 
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3. Conditionally invariant equations 

3.1. We now write down explicitly the conditionally invariant equations rclated to the 
subsingular vectors considered in the previous section. For simplicity we treat the case 
q = 1 first and the q-deformed analogues in the next section. 

We use the approach of [7] which we give in a condensed form here. We work with 
induced representations, called elementary represenrations (ERs). The functions of the ER5 
can be taken to be complex-valued Cm functions on the group G. The representation action 
is given by the left regulnr action, which in infinitesimal form is 

(38) 

where X E G, g E G, G is the Lie algebra of G. These functions possess the properties 
of right covariance [7]. For our purposes it is enough to consider holomorphic elementary 
representations for which right covariance means 

d 
( X L V ) ~ )  = p(exp( -Wg) l t , o  

k p = A ( X ) . ( o  X E X  ( 3 9 4  

kVP0 X E G -  (39b) 
where A E X*, and 2 is the right action of the generators of the algebra 8: 

(40) 
d 

(-h)(g) = zv(gexp(rX))Ir=a. 

Right covariance is also used to pass from functions on the group G to the so-called reduced 
functions Q on the coset space  GIB,^ where B = exp(X) exp(G-) is a Bore1 subgroup of 
G. Note that GIB is a completion of G+ = exp(G+) and in practical calculations one is 
usually using the local coordinates of G+. 

The weight A completely characterizes these representations, which we denote by CA, 
each of which is then in correspondence with the lowest-weight representations with the 
same lowest weight, in particular, with the Verma module V". 

Now the main ingredient of the procedure of [7] is that to every singular vector there 
corresponds an intertwining differential operator. Namely, to the singular vector U, = 
(see equation (6)) of the Verma module V" there corresponds an intertwining differential 
operator 

(41) 

(42) 

DKWu . CA - CA+m.U 

given explicitly by 

P m "  = 7J"y2:, . . . , 2:) 
where Po."' is the same polynomial as in (6) ,  and 2: is the right action (40). This operator 
gives rise to the Ginvariant equation 

(43) 
In the same way a subsingular vector produces a differential operator and equation 

which are conditionally invariant. The latter means that this invariance hold only on the 
intersection of the kernels of all intertwining operators D"J"* such that [Y and the singular 
vectors u ~ . ~ *  ire associated with the singular vector in question, i.e. on the space 

DWh Q = @J Q E C A  61 E cA+muu 

C,, = [Q E C"ID"*"'* Q = ~ O  , V [Y E Aru] (44) 
(see subsection 2.1.). A conditionally invariant equation has non-trivial RHS if we take the 
situation corresponding to the reducible factor-module F A  = V"\/f"; the latter is realized 
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when we do not impose in F A  the null condition corresponding to the subsingular vector 
which in F A  is a singular vector. A conditionally invariant equation has trivial RHS if 
we take the situation corresponding to the irreducible factor-module L A  = V " / I " ,  i.e. if 
we impose in F A  the null condition corresponding to the subsingular vector. Below we 
consider both situations, for which we are prepared by the detailed analysis of section 2. 

Remark 3. Note that one may exchange the left and right actions in the above 
considerations, i.e. consider the representations acting as right regular representations with 
properties of le@ covariance. Independently, if one uses highest-weight representations (see 
remark 1) one then uses the coset GIB', where B' = exp(7-I) exp(Gf) is the Borel subgroup 
of G conjugate to B. 

Remark 4. As we noted if one wants to treat the case of a real non-compact algebra Go 
one also has to use the results for its complexification G. The application of these results 
to GO has some subtleties [7]. However, in the case at hand when = su(2,2)  and 
G = sl(4) the passage to su(2,Z) is straightforwad [18]. Also considering representations 
of the corresponding groups (which are used here only to provide the representation spaces) 
involves some subtleties 171, which, however. are not felt in the case under consideration 
[W. 

Referring further the general case to [7] here we restrict ourselves to 0 = s1(4), 
G = SL(4) .  We pass to functions on the Bag manifold Y = SL(4) /B ,  where B is 
the Borel subgroup of SL(4) consisting of all upper diagonal matrices. (Equally well one 
may take the flag manifold SL(4)/B',  where B' is the Borel subgroup of~lower diagonal 
matrices.) We denote the six local coordinates on y by x+, U ,  I, z ,  2. From the explicit 
form of the singular vectors it is clear that we need only the right action of the three simple 
root generators. Denoting this right action of X: by Rk, from [7] we have 

where 

Things are arranged so that in the conformal setting we can use the same coordinates 
In this case the coordinates x*,  U, fi are related to the Minkowski space-time [18]. 

coordinates XO, XI, x2, q: 

while z ,  Z encode the inducing Lorentz representation as explained below. In particular, one 
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may use the following covariant representation for R2 1181 employing the Pauli matrices UN: 

0 -i I O  
G z = ( i  o )  u3=(  0 -1  ) .  

Note also that under the natural conjugation 

o fx i )  = x* @(U) = ii w(z)  = Z . (49) 

Y is also a flag manifold of the conformal group SU(2,Z). 
The reduced function spaces of the ERs in which our equations are defined are complex- 

valued Cm functions on the flag manifold. The holomorphic ERS of sI(4) are labelled by the 
signature x = (mi, m2, m3). We give the explicit expressions of the representation action 
for U,,(s1(4)) in appendix B, from which those for d(4) may be obtained by setting q = 1. 

In the su(2,2) case most applications in physics are in the case when mi, m3 E W 
and one uses reduced functions which are polynomials in the variables z ,  i of degrees 
mi - 1, m3 - 1, respectively. These then carry finite-dimensional irreducible representations 
of the Lorentz algebra of dimension mIm3. Let ns stress that this is an indexless notation 
on which all Lorenrz components of the fields are gathered together by the polynomial 
dependence in z ,  Z. To restore the components one has to take the entries of the independent 
terms in z,?, see [18]. Note that in the physics literature, instead of (ml,mz,m3), the 
labelling [d, j l ,  jzl is often used, where d = 2 - (m13 + mz)/2 is the conformal weight, 
j i  = (ml - l)/2, j 2  = (m3 - l)/2, so that for finite-dimensional Lorentz irreps one has 
jk E z+/2. 

3.2. We start with the equations arising from the BCG example of a subsingular vector. 
Substituting (45) in (15) we obtain the following sl(4)- and su(Z,Z)-invariant equation: 

R~ 6 = (a+ + za, +Fa, + a-) 6 = o (504 

while the subsingular vector ubss gives rise to the following conditionally invariant equation: 

(RI R ~ R ~  - R ~ R ~ R ~ )  6 = @,a, - a,a, + (ia, - 24) a,) 6 = g 60b)  

where 6 E CA and satisfies ( ~ O U ) ,  @' E CA', A' = A - ai3, the corresponding signatures 
being ,y = (0, 1, 0), x' = (-1, 1, -l).~ (Note that the second Casimir operator has the same 
value in the two representations: Cz(x) = C&') = -4, see equation (1 I).) If we consider 
the irreducible factor-module L A ,  which means that we should use (16) instead of (15). 
instead of (Sob) we have 

@"ai - a,a, + (?ai -~zaz) a,) 6 =o. (50~) 

3.3. We now turn to equations arising from the other archetypal sl(4) example. We consider 
the case when the lowest weight satisfies conditions (22). 
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We shall substitute the operators RX in the null conditions (26), (ZS), (29), (31), (33), 
(35). In all cases arising from the singular vector u3 = X:uo, (null conditions 
(26a), (28a), (29a), (31a), (33a), ( 3 5 4  we have the equation 

R 3 6 = a : 6 = 0  '(51) 
which means that our functions do not depend on the variable ?-this is valid for the 
signature X I  (a) and arbitrary a. (In the conjugate situation with signature x3 (a) our functions 
do not depend on the variable z.) 

Furthermore, we have the equations arising from the singular vector v2. when a E Z- 
(null Conditions (ZSc), (296)): 

(Rz)I-" 6 = 0 a E Z-. (52) 
Next, we have the equations arising from the singular vector U,, when a E N (null 

conditions (31c), (336), (35b)): 

(a,)" 6 = 0 1  a E N  (53) 
which means that our functions are polynomials in the variable z of degree a - I .  Thus for 
a = 1 our functions also do not depend on z. 

Next we write down the equation arising from the singular vector ulZ (null conditions 
(266), (28b), (316)): 

( ( a -  ~ ) R , R ~ - ~ R ~ R ~ )  + =  ((a-i)(a,+za+)-Rzai) ~ = o .  (54) 

It is also valid in all cases: however, for a = 0 it follows from (52) and for a = 1 it follows 
from (53). Now, since (54) is a first degree polynomial in Z, on which our functions do not 
depend, it actually consists of two equations, though not invariant by themselves, i.e. we 
have 

((a - I - za,)a, - a-a,) 6 = o (55d 

(556) 
Finally, we obtain the conditionally invariant equations co,?respouding to the subsingular 

vector U,. Let us denote by 9 the polynomial P with X: replaced by Rk. Now we shall 
obtain this operator in explicit form: 

(560) 

(56b) 

(564 

(566) 

((a - I - zaz)a+ - aGaz) 6 = 0.  

$ 4 = (R3R2 - 2RzRI) RI R i  6 
= cza+ +ai - R2ai) a, R~ 6 
= ((za+ + a d  a, R~ - R~ a, (za+ + ai)) 6 
= (a, a" - a-a+) 6 = U 6  

where we used (51) in passing from (56b) to (56c). Thus, we have recovered the d'Alembert 
operator. Note that (56) is valid for arbitrary a since we have used only condition (51) 
which is valid for all of our representations. 

Now if for a = 1 we take only invariant equations arising from the conditions (33) (i.e. 
we work with the counterpart of the factor-module F]), we have the following system of 
differential equations: 

a , @ = o  (574 

a, 6 ~= o (576) 

U @ = $  (57d 
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where Q E CA and satisfies (574 b), @' E CA', A' = h - 0113 - c12, the corresponding 
signatures being x = (1,0, 1). x' = (1, -2, 1). (Note that the second Casimir operator 
has the same value in the two representations: G ( x )  = C&') = -3, see (11)) If we 
consider the irreducible factor-module L I ,  which means that we should use (35) instead of 
(33), instead of (574 we have 

o$=o (574 
where 6 is as in (57c) and again satisfies (57a, b). 

Thus, from the subsingular vector uf we have obtained the d'ALembert equations (57c, 
d) as conditionally sl(4) and su(2,Z) invariant equations. 

Now we turn to the cases when a # 1. In these cases the vector uf is a linear 
combination of the singular vectors V I  and ul2 and it becomes zero when these singular 
vectors are factorized. Since us gives rise to the d'Alembert operators for all a we expect that 
the d'Alembert equation (574 will hold automatically if the invariant equations (51),(54) 
(arising from U,, V I Z )  hold. This is indeed so. We use the two equations (55) which are 
the two components of (54). First we take a, derivative from (554 and a- derivative from 
(556) and subtracting the two we get 

(U - 1 - Za,) (a-a, - ais,) Q = (U - 1 - Za,) 0 6 = 0. (584 
This still follows from (574. Analogously, taking a+ derivative from (55a) and a, derivative 
from (55b) and subtracting the two we get 

a,(a-a+ - a3aJ p = a, 6 = 0. (58b) 

( a - I )  O @ = O  (584 

This also follows from (574. Now, clearly from (58a, b) it follows that: 

which implies the d'Alembert equation if a # 1. 

on functions which do not depend on z and satisfy 
Using the conjugate situation with signature a ( a )  we recover the d'Alembert equation 

(59) ((a - i)R3Rz - ~ R ~ R , )  Q = ((a - i)(a, + za+) - Rzai) p = o 
instead of (54). Furthermore the analogues of (55~2, b), (51). (53), respectively, are 

((a - 1 - zai)ac - a-a,) p = o (604 

((a - 1 - iai)a+ - a,ai) Q = o @Ob) 

a, Q = O  .~ (60~)  

(ai)"Q=O a E A .  (604 
Thus if a E RI, then the functions of the irreducible representations are polynomials in Z of 
degree a - 1. 

If a E Z- our functions satisfy (52) as those with signature XI@).  
Finally the d'Alembert equation (574 follows from equations (604 6) (a # 1). We do 

not need to consider a = 1 since the two signatures coincide. 
We now summarize the results of this subsection. The first resuIt is that the d'Alembert 

equation (1) (equation (574) holds in the representation spaces with signatures XI@) = 
(a, 1 -a, 1) (xs(a) = (1, 1 -a, e)) if our functions do not depend on the variable i (z) and in 
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addition satisfy equations (570, b) (equations (60a, 6)). For a = 1 the d'Alembert equations 
(57c, 6) are conditionally sL(4) and su(2,2) invariant, while for a # 1 the d'Alembert 
equation (574 just follows from equations (57a. b)  (equations (604 b)). If a E W then our 
functions are polynomials in z (i), of degree a - 1. 

In the su(2.2) setting we again recall that the variables z ,  Z are representing the 
spin dependence coming from the Lorentz representation [18-20]. The above result is 
then restated thus in the case a $ W: the d'Alembert equation holds if the fields carry 
holomolphic (depending only on z )  or antiholomorphic (depending only on Z) infinite- 
dimensional representations of the Lorentz algebra; in addition they satisfy (57~2, b) and 
(604 b), respectively. In the case a E W we restrict ourselves to Lorentz representations 
which are finite-dimensional; in fact, of dimension a. 

The case a = 1 is remarkable in one more respect, namely, in this case one may 
have a non-trivial RHS, see (574. It is easy to check that there are no other cases with 
non-trivial RHS. In fact, for a f 1 (574 follows from (57~2, b), or (604 6). This can 
also be shown independently. Indeed, in the first case the candidate signatures would be: 
xl(a) = (a, 1 - a ,  l), x;(a) = (a, -1 - a, 1). We know that a necessary condition to 
have an invariant equation is that the two representations would have the same Casimir 
operators, in particular, one should have Cz(xl(a)) - C ~ ( X ; ( U ) )  = 0, where C, is given 
in (1 1). Calculating this difference we obtain 

c2(xl(a)) - Cz(xj(a)) = 2(a - 1) (61) 

which is not zero unless a = 1. 
The cases a z 1 are interesting in other contexts, especially, if we consider together the 

representations with the conjugated signatures X I  (a) and x3(a) with the same a E A + 1. 
In particular, in the case a = 2 the two conjugated fields are two-component spinors and 
(54), (59) are the two conjugated Weyl equations. 

The cases a = 3 are maybe the most interesting. The Lorentz dimension is 6 (= 2a) and 
the resulting field is the Maxwell field. As was shown in detail in [19] equations (54), (59) 
are just a rewriting of the free Maxwell equations 

a p F p "  = o  a p * ~ , ,  = 0. (62) 

Rehrk 5. 
i.e. 

The general Maxwell equations with non-zero current were considered in 1191, 

a p F p u  = J ,  a p  * F ~ "  = o (63) 

which are then equivalent to a modification of (54),(59) with non-zero right-hand sides 
which are given explicitly in equations (5a, b) of 1191. More than that, in [I91 is discussed 
an hierarchy of Maxwell equations involving two conjugated families of representations: 
x; =(n+3,-n-2,n+l) ,  x; = ( n + l ,  -n-2,n+3),n ~Z+,fromwhichtheMaxwell 
case is obtained for n = 0. Note that there is no other intersection of this Maxwell hierarchy 
with the two families x,(a) and x3(a) (see equations (22c).(36c)) which we consider in 
this paper. 

We may write out many other equations with indices, however, one of the main points 
here is that in this form equations (57) and (60) are valid different representation spaces, 
the different representations manifesting themselves only through the parameter a. 
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Remark 6. 
involving the d'Alembert operator, from which (57c) is a partial case (m = l), namely 

(i) It is interesting to note that there are other conditionally invariant equations 

"=$Y m E l Y  (64) 
where 6 E CA, $Y E CA', A' = A - m (0113 + LYZ), the corresponding signatures being 
x = (m, 0, m),  x' = (m, -2m, m). These are produced by subsingular vectors of weights 
m (0113 f a z )  [16]. The functions 6, $Y cany irreducible Lorentz representations which are 
symmetric traceless tensors of rank m - 1. (For early examples, namely, (64) with m = 2, 
obtained from other considerations, see [3-51.) 

(ii) We should note that there are conditionally invariant equations involving the 
d'Alembert operator, which do not arise from subsingular vectors but from reduction of 
integral intertwining operators. These equations are also given by (64), however, the 
corresponding signatures are x = ( m , n , m ) ,  x' = ( m , n  -2m,m),  m , n  E N, see [6],  
for example. 

(iii) We should note that in (most of) the physical applications equation (64) is 
not considered conditionally invariant. The reason is that only representations induced 
from finite-dimensional Lorentz representations are considered there. The fact that these 
representations are also subspaces of reducible representations is ignored and thus the 
restriction to these subspaces is not considered to be a condition (see [2-6]). 

4. ConditionaUy invariant q-difference equations 

4.1. We now give the treatment of the conditionally invariant equations in the q- 
deformed case. First we need to introduce our reduced representation spaces CA with 
signatures x = x(A) = (ml ,m*,m3) ,  cf [21,19]. The elements of C", which we 
shall call (abusing the notion) functions, are formal power series in the non-commuting 
variables z ,  U ,  x - ,  x+, ii, i, which generate the q-deformation Yq of the flag manifold Y 
(the commutation relations of these variables using the same notation are given in [19]). 
More explicitly, these reduced functions are given by 

'$(F) = P i j k t m n  @;jkemn 
i . j . k . h . n c 4  

j k t -m -n 
6 i j k e m a  = z i  x- x+ U z 

where denotes the set of the six~variables. 
Next we introduce the following operators acting on our functions: 

kr 6@) = b i j k t m n  k 6 i j k t m n  
i.j.k.e.m.nE%+ 
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(69) 
1 
- M F 1  (T, - TL') G(f) A 5x &(f) K =~Z. f, U. 17, Z . 

Note that although k;' is.not defined if the corresponding variable is of zero degree, the 
operator & is well defined on such terms, and the result is zero (given by the action of 
(T, - T;')). O f  course, for q + 1 we have De --f a,. 

Using the above operators the representation (left) action was given in [21] for general 
n and for n = 4 in [20]; for the reader's convenience it is summarized in appendix B. 

The q-difference analogues of the operators Rk. i.e. the right action of Uq(sZ(4)) on our 
functions, are also known from [21]. Adapting this to our notation we have 

R; = r, (T,T-T+T~-' (70~) 

R; = ( 4  Mz 5" T: TZ + 5- T- + G~ $+ (T"T-)-I T< fq-1 Mz z$ - 
-A A?" 2: 6- $+ T j )  Tj TF' (7Ob) 

( 7 0 ~ )  R3 4 - -5  i T i .  

To obtain the (conditionally) invariant q-difference equations imounts now simply to 
substituting X: with Ri in the expressions of the (sub)singular vectors for general q . ~  

4.2. Substituting equation (70) in (15) we obtain the following Uq(s1(4)) and Uq(su(2, 2)) 
invariant equation: 

R; 6 = (4  Mz 9" T: T_Z + 6- T- + Mz Mi $+ (T"T-)-~ T~ + 4-1 

-A Mu M j  5- '6, Tj ) T, - T, - - ' i j =o .  (714 

The subsingular vector Vbgg gives rise to the following conditionally invariant equation: 

(Rf R; RZ - R; Rl Rf) @ 
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+q2 6+ T+ T: (Tz Ti + (4-' Ti T;' - q Tz T;')/h) 

+qh kv 5- 5+ eZ Ti Ti Tc 

+qh(q Mz 8" T,' T? + 6- T- 
+Mz Mi e+ (TvT-)-' TG + q-' k: 66 
-A ku k: 6- 6+ Tc) 5i 6= Tz} (T,T-T+)-' 6 = @' (716) 

where 6, E CA and satisfies (71~). @' E CA', A' = A - (~13, the corresponding signatures 
being as in (50). Clearly (71a, 6) go into (50a, 6 )  for q = 1. If we consider the irreducible 
factor-module L A ,  which means that we should use (16) instead of (E) ,  then we have a 
zero RHS in (71b) as in (50c). 

4.3. Finally, we write down the q-difference analogues of the d'Alembert equation and of 
the equations ensuring its Uq(s1(4)) and Uq(su(2, 2)) invariance and from which it follows 
(except for Q = 1). Substituting (70) in (35) we obtain 

R3 (5 =6; Ti $ = O  (724 

( [ a  - 114 Rf R; - [a], RZ Rf) 6 

= (.t [a - 1Iq (q 5" T" 2 2  T- + 2: 5+ (T"T-I-1 TG) 

) -1  

-q'-" (q Mz 6" T,' T? + 5- T- 
+GZ 62 6+ (T"T-)-] Tc + q-] 6i $e 

-A k" Mi 5- 5+ TG D2 Ti (T,T-T+)-' 6 = 0 (726) 

(7% (Ri R; - [214 R; Rz) Rf R; 6 = 0 .  

As in the q = 1 case we use (724 to split (7%) in two equations and to simplify (72c). 
Finally, we have 

(730) Di Ti 6 = 0 

(,a+' [a - I],, 6" T~ T: T- - (q M2 5" T: T- + 5-1 5z T~ (T,T+)-' 6 = o 

(qO+l [a - 114 e+ Tz (TJ-)-' TG - (& 5+ (T,T-)-' TG + 4-I ' 6 0  

(736) 
) 

- h k" 5- 5+ Tc) ez) Tz (TJ-T+)-' 6 = 0 (73b') 

+ - 2-2 T;1 {(e" 6G Tu 3 TG -1 - 4  e- 6 7-2) 
-q 6- 6+ (TJ;' - T;'Tz)} (T'T+)-' Tz T- T: 6 = 0. (73d 



Subsingular vectors and conditionally invariant equations 7153 

In addition, if a E N we also have 

r, (T,T-T+Ti)-')" 0 = 0 .  (734 

In the scalar case a = 1 the relevant equations are (73~2, c, 4, in particular, using 
(7%) and adding a non-trivial RHS we obtain the conditionally U9(s1(4)) and Uq(su(2, 2)) 
invariant q-d' Alembert equation 

3 -1 - 1  [ (D" D; T" - q 6- 6+ P)r , ; '  
. . -  

-qA D- D+ f i v  fin} (Tu'&-' T- T: 6 = 9' a = 1.  (73e) 

Analogously one may write down explicitly the conjugate invariant equations. 
Clearly, for q = 1 (73c, e )  go into the d'AlemberCequations (574 c) ,  respectively. 

Appendix A. Synopsis on Uq(s2(4)) 

The quantum algebra Uq(s1(4)) is defined as the associative algebra over C with Chevalley 
generators X: , H, , j = 1,2,3, and with the relations [8,9]: 

[x; , xcl = 6jk [ffjlq (Ala) 

(Alb) 

where [.XI, = (4' - q-')/A, A q - q-I. (ajk) = (2(01j,ck'k)/(Uj, a,)), j ,  k = 1,2,3, is 
the Canan matrix of sL(4); U,, 012, 013 are the simple roots; the non-zero products between 
the simple roots are: (aj,aj) = 2, j = 1,2,3, (q ,a2)  = (012, 013) =~-1. The non-simple 
positive roots are : 0112 = 011 +U*, 0123 = 012 + 013,0113 = (YI + 012 + 013. The elements Hj 
span the Cartan subalgebra X, while the elements X; generate the subalgebras g*. 

* [ H j  , Hk] = 0~ [ H j  , X:] = iajkXk 

(X;)'X; - [2],X;Xk I *  X ,  + X:(X?)' = 0 

[X?.  x:] = 0 

( j k )  ~= (12), (21). (23), (32) 

The Cartan-Weyl basis for the non-simple roots is given by [9,10,22] 

xp i k  = +q+l/2(ql/2x*x* i k  - q-'/zx*x* k i  ) ( j k )  = ( W ,  (23) (sa) 

All other commutation relations for the generators follow from these definitions [223 
(x: X?): 

rx: , XS] = -4H"X-  a+lb l ( a < b g 3  -Ha rx,' 1 5 1  = xs-,q 
(A34 
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